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Abstract 

The quality and service life of the roadways that make up the highway transportation 

infrastructure are dependent upon the selection and use of high quality aggregate materials. Five 

state transportation agencies participated in this Transportation Pooled Fund (TPF) study, which 

was designed to demonstrate the use of laser scanning as a means to assess, in real-time, the 

quality of aggregate used in highway construction. Participating states included Kansas, New 

York, Ohio, Oklahoma, and Pennsylvania. 

The referenced technology is based on a process referred to as Laser Induced Breakdown 

Spectroscopy (LIBS). In this process, a high-powered laser pulse is used to excite atoms that 

make up the aggregate. This excitation results in the emission of light from a range of unique 

wavelengths (spectrum) that can be thought of as a “fingerprint” of the material. The 

development of a database of spectra or fingerprints of many aggregate materials with known 

engineering properties provides the basis for employing numerical techniques (models), similar 

to “fingerprint matching,” to identify the properties of unknown aggregate material.  

Scanning data generated in this demonstration show that the technology can differentiate 

between approved and unapproved aggregate sources. It has the potential to quantify specific test 

parameters such as acid insoluble residue (AIR), Micro-Deval loss, and specific gravity, as well 

as to identify the presence of deleterious materials, such as reactive chert, ASR and ACR, and D-

cracking susceptible aggregate. It can be used to identify the aggregate source or sources of a 

stockpile of unknown material(s).  

A total of 113 aggregates supplied by the participating states were laser-scanned using a 

field prototype system located in a field materials testing laboratory in South Bethlehem, New 

York. The analyses in this demonstration focused on specific gravity (bulk and SSD) and 

absorption, D-cracking, acid insoluble residue, Micro-Deval, and Los Angeles (LA) Abrasion 

Loss. The results show that laser scanning can successfully predict the properties of aggregate, 

opening up a whole new way of analyzing aggregate materials. Based on the results presented, 

recommended future work is outlined, some of which has been initiated and presented herein to 

refine the scanning and modeling process to enhance data quality.  
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Chapter 1: Introduction 

1.1 Overview 

It is nearly impossible to produce a mineral aggregate product for use in construction that 

does not have some risk of contamination. This is particularly true of crushed stone sources 

comprised of limestones, dolostones, and sandstones that are typically interbedded with low 

quality layers that cannot be wholly segregated during the extraction process. Gravel beds, 

created by glacial and/or water transport, are generally found in discrete deposits, but gravels of 

acceptable quality often occur next to gravels of low quality. Other sources of stone and gravel 

product contamination include soil overburden, silt/clay, or gravels of low quality underlying the 

gravel deposit.  

As a result, prior to use, construction aggregates are subjected to a series of tests to 

ensure compliance with appropriate state, local, and federal requirements. Standardized test 

methods have been developed by agencies such as the American Society of Testing Materials 

(ASTM) and the American Association of State Highway and Transportation Officials 

(AASHTO) as a means to evaluate the quality of construction aggregate and to determine 

whether the materials are in compliance with appropriate specifications. Most of these tests were 

developed in the early and middle part of the 20th century and are the basis of quality control 

(QC) and quality assurance (QA) programs currently employed in the industry. 

It is generally recognized by most material engineers and material geologists that existing 

test methods are in need of an upgrading. Many of the current aggregate QC test methods do not 

adequately characterize aggregate properties, are time consuming, highly inefficient, and have 

poor reproducibility. Inefficient, time-consuming tests and inaccurate QC test methods 

negatively impact the service life of our highway infrastructure. They introduce considerable risk 

to the hot mix asphalt and portland cement concrete production industry, where suppliers 

generally produce and laydown final pavement products prior to receiving quality control testing 

results. The ramifications of test failures after the pavement is in-place are financially and 

administratively burdensome to the producers, contractors, and the transportation agencies 

charged with ensuring that funds to construct and maintain the highway infrastructure are used 

efficiently. QC issues in the industry are further aggravated by the poor precision associated with 
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many of the sampling and acceptance tests employed by the industry and the skill of technicians 

conducting such tests.  

With the advent and rapid development of modern spectroscopy in the mid-20th century 

and the development of laser technology in the latter part of the 20th century, the means to 

remotely scan materials in “real-time” began to emerge as a viable commercial technology for 

many industries. In April 2012, the Transportation Research Board (TRB) published the results 

of the first documented study in the United States that examined the viability of using laser 

scanning process to identify and characterize aggregate materials used in highway construction 

(Chesner & McMillan, 2012). The laser scanning process described in this report is referred to in 

the scientific literature as Laser-Induced Breakdown Spectroscopy (LIBS). The process makes 

use of a high-powered laser that couples with and excites atoms present in the microstructure of 

target aggregate materials. This atomic excitation process induces the release of electromagnetic 

radiation (spectra) that is unique to the aggregate material targeted. The study demonstrated the 

feasibility of using the LIBS process along with multivariate (or chemometric) modeling to 

“fingerprint” aggregates based on the specific wavelength pattern emitted by the laser-induced 

emission, and to use these fingerprints to identify the type and characteristic of unknown 

aggregate sources. 

The successful deployment of laser scanning technology could have far reaching quality 

control ramifications. It could provide the means for state transportation agencies to rapidly 

screen samples that must be monitored to ensure aggregate quality, reducing the laboratory 

burden facing many agencies. It could provide the means for aggregate producers to monitor 

their production process at the source in real time, minimizing the potential liability issues 

associated with off-spec quarried aggregate entering the market place. It could provide to asphalt 

and concrete producers the assurance that only products specified are used in roadway 

construction.  

Initial interest by several state agencies in this 2012 work led to the development of this 

Transportation Pooled Fund (TPF) study, spearheaded by the Kansas Department of 

Transportation (KDOT), to explore in greater detail the practical aspects of employing laser 

scanning as a QC technique in the highway industry. 
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1.2 Objectives and Scope 

Transportation Pooled Fund Project TPF-5(278) was initiated in late 2013 with five 

participating agencies. These included Kansas, New York, Ohio, Oklahoma, and Pennsylvania. 

The primary objective of the effort was to determine whether laser scanning could effectively be 

employed to predict aggregate types and properties in a commercial environment.  

The TPF work plan focused on a series of tasks:  

1. Collecting aggregate samples from each of the participating states, and 

scanning these samples in a field laser prototype developed for this pooled 

fund effort;  

2. Compiling a database (fingerprints) of known materials (calibration 

models);  

3. Validating the models to determine whether the available database 

(calibration models) could be used to predict the type and characteristics 

(engineering properties) of unknown samples; and 

4. Assessing the operation of the laser scanning hardware and software used 

in the laser scanning program. A more detailed discussion of the laser 

scanning prototype is presented elsewhere (Chesner, 2015). 

Each participating state provided engineering property data associated with the aggregate 

samples supplied for scanning. These data were transmitted through an online database 

developed specifically for this TPF study. The state-supplied engineering property data were 

generated using traditional laboratory methods and included: 

• Specific gravity (bulk, saturated surface dry, and apparent) 

• Absorption 

• Micro-Deval loss 
• Los Angeles (LA) abrasion loss 

• Acid insoluble residue (AIR) 

• Stability during freeze/thaw (soundness and expansion) 
• Percent deleterious materials 

Calibration and validation testing of these properties using scanned fingerprints were the 

primary analytical focus of the investigation. The tasks, findings, and conclusions of this TPF 

study are described in this report.  
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Chapter 2: Methodology 

2.1 Hardware and Process Development 

Initial 2012 aggregate laser scanning research, described in Section 1.1, was conducted 

on a bench scale (table-top) laser system (Chesner & McMillan, 2012). In a bench scale system, 

the laser technician targets individual aggregate particles, placed on a target platform, one 

particle at a time. Such a system was not considered practical for a commercial aggregate 

scanning operation. Aggregate heterogeneity requires characterization of a large number of 

particles, which cannot be practically accomplished in a bench scale system in a field 

environment. The prototype aggregate scanner used in this TPF study is referred to as the Sample 

Laser Targeting (SLT) System. The SLT system components are contained in a 2 × 3 × 4-ft-high 

cabinet, shown in Figure 2.1. The cabinet houses a laser, supporting power supply, optical 

components, material flow equipment, and specialized software, and is capable of scanning 

thousands of particles introduced into the system in minutes.  
 

 
Figure 2.1: Photograph of SLT at Callanan Industries, Inc., Materials Testing Lab in South 
Bethlehem, NY 
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Figure 2.2 is a photograph of an operator introducing a bulk aggregate sample of 

approximately 3 gallons into the SLT. The aggregate flows vertically down inside a material 

flow chute, where a pulsed laser beam is directed at aggregate particles moving past the laser. A 

conceptual representation of the SLT process concept is shown in Figure 2.3. 
 

 
Figure 2.2: Operator Introducing Aggregate into SLT for Scanning 

 

The Figure 2.3 schematic shows an Nd:YAG laser emitting a high-powered laser beam at 

a wavelength of 1,064 nanometers (nm) directed through a focusing lens and a target orifice.1 

The target orifice opens into the material flow chute, through which the aggregate sample 

migrates. In this arrangement, the laser can be set to fire continuously at the target aggregate as 

the aggregate flows vertically through the material flow chute. The high power associated with 

the laser generates a plasma that emits light back through the target orifice. This light, visible and 

non-visible, is collected and transported through an optical fiber to a spectrometer and charged 

coupled detector (CCD). The spectrometer resolves the light into its component wavelengths and 

the CCD transfers the information electronically to a computer for storage and analysis.  

 

                                                           
1 The type of laser used in the SLT is an Nd:YAG (neodymium-doped yttrium aluminum garnet) laser; Nd:Y3Al5O12 is a crystal 
that is used as a lasing medium for select solid-state lasers. 
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Figure 2.3: SLT LIBS Process Equipment Concept 

 

2.2 Aggregate Spectra 

The unique spectral patterns generated in this process can be equated to fingerprints that 

reveal information about the underlying microstructure of the target aggregate material, and can 

be used to assess similarities and differences between aggregates. A spectral pattern generated 

during scanning from an Oklahoma limestone sample is shown in Figure 2.4. The abscissa axis 

contains the emission wavelengths, and the ordinate axis shows the intensity of light at each 

corresponding wavelength recorded by the spectrometer. 
 

 
Figure 2.4: Oklahoma Limestone Spectral Pattern 
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The spectral pattern, shown in Figure 2.4, is comprised of intensity measurements at 

approximately 14,000 different wavelengths. To discriminate between and among the spectra 

patterns generated by the variety of aggregates tested, special mathematical modeling techniques 

(chemometric modeling) are employed. These techniques provide the means to discriminate 

between observed spectra from known materials and spectra from unknown materials and to 

predict the engineering properties of the unknown aggregate. Due to the heterogeneity inherent 

in aggregate particles, suitable characterization requires a sufficient number of laser shots to 

provide an accurate representation of the spectral pattern associated with the target aggregate. 

The spectral emission pattern shown in Figure 2.4 is an average of 1,500 laser shots. 

 
2.3 SLT Modeling 

As noted above, to analyze spectral data generated by the LIBS process, the SLT employs 

multivariate analysis, commonly referred to in the scientific literature as chemometric modeling. 

Two related chemometric modeling techniques were employed in this investigation: (1) Principal 

Component Analysis (PCA), and (2) Partial Least Squares Regression (PLSR). A detailed 

description of these techniques is beyond the scope of this report but, in general, PCA is used as 

a discriminatory model to sort out dissimilar aggregate types from similar types, and PLSR is 

used as a regression model to predict aggregate properties based on spectral emission data that 

has been calibrated to specific aggregate types and properties. 

The main result of PCA is a PC score plot, which is a two-dimensional diagram that 

reduces the multi-dimensional nature of the analysis to a more familiar two-dimensional 

framework that can be visualized. The two dimensions of this plot represent a new coordinate 

system referred to as principal components (PC). The samples plot on this two-dimensional 

diagram can be interpreted like any two-dimensional (x vs. y) diagram. Samples that are similar 

in composition plot near each other and those with very different compositions will plot in a 

different section of the diagram.  

PLSR is similar to PCA but can be used to develop models that project values (dependent 

variables) for unknown samples based on previously calibrated data generated from an original 

data set. The dependent variables can be values such as specific gravity or acid insoluble residue, 
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or any selected engineering property. Like any calibration, once a model is calculated, one can 

input into the model spectra from an uncharacterized source to predict the values of unknown 

variables associated with the unknown source. Dependent variables, in addition to engineering 

material properties, can also be indicator integers. Integers “1” and “0” are used in aggregate 

analysis to model data in which there are yes or no questions that must be answered (e.g., does 

the group contain a deleterious material or not).  

The efficacy of PLSR models can be evaluated by how well a predicted value correlates 

with a known input value. This evaluation is typically done using graphical techniques, followed 

by data precision and accuracy tests. Graphical evaluation techniques are referred to as PLSR 

validation plots. Both PC score plots and PLSR calibration and validation plots are used to depict 

the results of the data analysis and are presented in the next section of this report.  

The most relevant method to assess the precision and accuracy of SLT scanning 

measurements and models is to analyze a sample with known engineering values multiple times 

and calculate the standard deviation (precision) and the absolute difference between the average 

analyzed value and the known value (accuracy). This was not rigorously done in this TPF 

project, because the focus was on hardware, software, and database development as much as on 

sample analysis. The small number of samples available precluded detailed precision and 

accuracy analyses. Defining the precision and accuracy of SLT measurements is planned in a 

new TPF project.  

Also, it is important to note that the “known” values consist of a single traditional 

analysis; the precision of these measurements is not known. Thus, the SLT data can be no more 

accurate than the traditional data used to produce the models.2 This is an issue that will be 

considered further in subsequent work. 

In this report, analytical deviations (plus and minus range around the predicted answer) 

are reported for models in which the value of an engineering property (i.e., specific gravity, LA 

loss, etc.) is predicted using test-set validation, described in greater detail in the next section. 

They can be applied in the same way as the root mean squared error of prediction (RMSEP) in 

                                                           
2 Reference here is being made to the standard AASHTO, ASTM, or state transportation agency lab tests, most of which lack 
rigorous statistical data on both accuracy and precision. 
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that they provide an estimate of how well the modeled value has been predicted.3 The deviation 

values (plus or minus values associated with any prediction) represent the best estimate of the 

range where 95% of the dependent variables can be expected to occur. 

                                                           
3 One difference between the deviation values reported here and RMSEP is that the latter is calculated using the absolute errors 
from all of the measurements. The chemometric deviations used in this analysis do not use absolute errors because the 
engineering value may not be known for all samples. Instead, the deviation values are derived from a measure of how similar a 
spectrum is to the other spectra in the model and how well the modeled spectrum compares to the actual spectrum.  
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Chapter 3: Results 

3.1 Test Samples and Known Engineering Properties 

To evaluate the performance of the SLT prototype, test aggregate samples were provided 

to the Research team for scanning by the TPF participating states: Kansas, New York, Ohio, 

Oklahoma, and Pennsylvania. Each state also provided test data on the respective aggregate 

samples submitted for scanning. A listing of the number of samples and property test data 

provided by each respective state is presented in Table 3.1. 
 

Table 3.1: Summary of Number of Samples and Test Data Provided by States 
Available Test Data Kansas New York Ohio Oklahoma Pennsylvania All States 
Acid Insoluble Residue 36 16 -- 8 -- 60 
Bulk Specific Gravity 36 -- 14 33 14 97 
SSD Specific Gravity 36 -- 14 26 14 90 
Apparent Specific Gravity 24 -- -- -- 14 38 
Absorption 36 -- 14 33 14 97 
Micro-Deval -- -- -- 27 14 41 
LA Loss 36 -- 8 33 14 91 
Production Samples 12 -- -- -- -- -- 
D-Cracking 35 -- -- -- -- -- 
% Chert -- -- 9 -- -- -- 
% Blast Furnace Slag -- -- -- -- 14 -- 

 

Samples provided by each state for scanning were selected from a wide range of sources. 

A list of the types of samples received from each state and the sample sources are summarized in 

Table 3.2. It is of note that the wide range of aggregate types and source locations, coupled with 

the relatively small number of samples that were available for scanning during this effort, are not 

ideal conditions for calibrating and validating aggregate chemometric models. Additional 

samples are needed. Nonetheless, as will be shown below, aggregate properties can be defined in 

most cases, suggesting that additional and more focused sample collection strategies would 

significantly improve the database.  

Each sample received was contained within a 5-gallon bucket, containing approximately 

3 to 4 gallons of aggregate material. Scanning was undertaken by introducing the 3 to 4 gallon 

sample through the SLT, as shown in Figure 2.2, and firing a total of 150 laser shots at the 
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sample. The spectra associated with these 150 shots were averaged to yield one subsample 

spectra. This process was repeated 10 times to yield 10 subsample spectral images, each 

representing the average of 150 laser shots. The 10 subsample results were further averaged to 

yield one super-averaged spectra to represent the one sample. 
 

Table 3.2: Distribution of Sample Types and Sources from Five States 
Source 
Description Kansasa New 

Yorkb Ohioc Oklahomad Pennsylvaniae 

Limestone x x x x  

Gravel   x x  

Sandstone    x  

Dolostone   x x  

Blast Furnace 
Slag     x 

Steel Slag     x 

Recycled 
Concrete    x  

a. Kansas samples were collected from at least seven different quarries around the state. 
b. New York samples were collected from three to four quarries. 
c. Ohio samples were collected from at least 15 different locations. 
d. Oklahoma samples were collected from at least 26 different locations, and included 
quarry sites in Arkansas, Texas, and Colorado, as well as Oklahoma. 
e. Pennsylvania samples included blast furnace slag and steel slag blends collected from 
14 different slag pile locations. 

 

The efficacy of the modeled data was determined using one of two techniques:  

1. Test set validation, and  

2. Cross-validation.  

When a set of data is used to calibrate a model, the most effective approach is to obtain a 

set of samples for use as a calibration set to calibrate the model, and then use a completely 

independent sample or validation set to validate the model. This method is referred to as “test set 

validation.”  

When there are an insufficient number of samples available to calibrate the model, in 

chemometric modeling the “cross-validation” method is commonly used. In cross-validation, the 
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model is calibrated using all the data, and then in a stepwise fashion, one sample is removed 

from the model. A new calibration model is then generated without the left out sample. The 

sample left out is then used as a test sample. This process can be repeated until each sample in 

the model has been analyzed in this fashion. In general, models were tested using cross-

validation, but wherever more than 20 samples were available, test set validation was employed.  

The following subsections summarize the procedures, representative results, and findings 

observed during the laser scanning and modeling efforts. Heterogeneity of various types is 

thought to affect the quality of the results: 

• Inherent mineralogical heterogeneity; 

• Heterogeneity of particle orientation in the SLT material flow chute; 

• Variations in lab testing results from lab to lab and state to state; and 

• Changes in the laser and spectrometer system operations related to 

temperature, vibration, and other environmental conditions. 

These factors are briefly alluded to in this section, where applicable, and discussed more 

fully in Section 4.3.  

 
3.2 Measurement of Engineering Properties 

3.2.1 Bulk, Saturated Surface Dry (SSD), and Apparent Specific Gravity Results 

Specific gravity models are presented for Kansas (limestones) and Pennsylvania (slag) 

aggregate types. A third model is also presented using aggregates from all states that submitted 

specific gravity data (KS, OH, OK, and PA). 

Using exclusively the Kansas data, test set validation models were developed for bulk, 

SSD, and apparent specific gravity. A total of 36 samples were available for model development. 

Four KS samples (KS-09, KS-19, KS-23, and KS-30) were left out of the three calibration 

models (bulk, SSD, and apparent specific gravity); each of the three models was calibrated with 

the remaining 32 samples. The four samples were then inserted into each model to predict the 

bulk, SSD, and apparent specific gravity values. Test-set validation results for bulk, SSD, and 

apparent specific gravity are presented in Figure 3.1, Figure 3.2, and Figure 3.3, respectively. 

Each figure shows the calibration results (diamonds) and the test set validation results (circles). 
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The actual values and the respective plus/minus deviations and absolute errors between the 

measured and predicted are included in tabular form in each figure.  

The results demonstrate that the models developed provide impressive predictive 

capability in a range of +/-0.05 of the expected specific gravity value. 
 

 
Figure 3.1: Kansas Bulk Specific Gravity Calibration (Black Diamonds) and Test-Set 
Validation (Green Circles) 
The table gives the predicted SLT and known bulk specific gravity results. 
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Figure 3.2: Kansas SSD Specific Gravity Calibration (Black Diamonds) and Test-Set 
Validation (Green Circles) 
The table gives numerical results for test-set samples. 

 

 
Figure 3.3: Kansas Apparent Specific Gravity Calibration (Black Diamonds) and Test-Set 
Validation (Green Circles) 
The table gives numerical results for test-set samples. 
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Pennsylvania aggregate samples are unique in this study because they are all slag 

aggregates, including both blast furnace slag and steel slag, some originating from decades-old 

stockpiles and some from fresh sources. The calibration and cross-validation model results for 

Pennsylvania apparent specific gravity (14 samples) are presented in Figure 3.4 and Figure 3.5, 

respectively. Given the small sample set and the slag variability encountered, the validation 

results provide a clear positive trend; however, additional samples from each source of slag are 

required to fully model specific gravity using slag samples. 
 

 
Figure 3.4: Pennsylvania Calibration Model for Apparent Specific Gravity 

 

 
Figure 3.5: Pennsylvania Cross-Validation Model for Apparent Specific Gravity 

 

In the 113 aggregates used in this study, the most common engineering properties 

available were bulk and SSD specific gravity data. All states, with the exception of New York, 

reported bulk specific gravity and SSD specific gravity results on all samples. The bulk specific 

gravity model calibration and test set validation results for 10 test set samples selected from the 
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combined KS, OK, and Ohio data were calibrated on 73 samples and are presented in Figure 3.6. 

Combining data in such a manner introduces all of the heterogeneity issues outlined in Section 

3.1, particularly mineral heterogeneity and lab-to-lab heterogeneity associated with lab results 

from multiple states. Nonetheless, results of the test samples presented in the table below show 

most test samples to be within + 0.07 of expected values, with one bad outlier (OK-18).  
 

 
Figure 3.6: Combined States (KS, OK, and OH) Bulk Specific Gravity Calibration and Test-
Set Validation 

 

The models for SSD specific gravity using the same KS, OH, and OK samples are shown 

in Figure 3.7. Test-set results exhibited absolute SSD specific gravity values within 0.09 of the 

expected values, with the exception of the OK-18 outlier. 
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Figure 3.7: Combined States (KS, OK, and OH) SSD Specific Gravity Calibration and Test-
Set Validation 

 

3.2.2 D-Cracking Results 

A total of 35 samples were used in the Kansas D-cracking studies. The goal in this study 

was to separate samples into two groups: those that, according to Kansas test data, would pass 

the D-cracking test and those that would fail. PLS calibration models were generated, using the 

integer regression variable “1” for passing samples and the integer regression variable “0” for 

failing samples. Once a model was calibrated by setting passing and failing samples to these 

values, the predicted variable was calculated for a selected set of test set samples. Samples with 

calculated variables closer to 1 were assigned to the passing group; those with calculated 

variables closer to 0 were assigned to the failing group. A value called the VAD (Value of 

Apparent Distinction) was used to separate the two groups. The VAD is chosen during 

calibration to give the best fit to the model. 
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The D-cracking pass/fail model was calculated (calibrated) twice, with the omission of 

two different sets of test-set samples. Figure 3.8 shows the results of the calibration for the first 

model in which passing samples KS-22 and KS-41 and failing samples KS-9 and KS-43 were 

reserved for test set validation; 31 remaining samples were used in the calibration model. Using a 

VAD of 0.4, the calibration was 90% successful; only three samples were misclassified. The 

exercise was repeated using four different samples for test-set validation (passing samples KS-29 

and KS-11, failing samples KS-8 and KS-37). The results of the calibration are shown in Figure 

3.9. This time the model was also 90% successful, with a VAD of 0.4, and only three samples 

misidentified. 

The test-set samples KS-9, KS-22, KS-41, and KS-43 were run through the first model 

and the predicted variable values were determined. The results, listed in Table 3.3, show that the 

model correctly predicted whether all four samples would pass or fail. For the test set samples 

KS-29, KS-11, KS-8, and KS-37, three of the four test-set samples were correctly identified. 

Sample KS-37 had a calculated value of 0.81, above the VAD of 0.4, and so would be assigned 

to the group of passing samples, although it is a failing sample. Overall, seven of eight samples 

were correctly identified, for a success rate of 87.5%.  
 

 
Figure 3.8: Kansas Calibration Results for First D-Cracking Pass-Fail Model (90% 
Success Rate) 
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Figure 3.9: Kansas Calibration Results for Second D-Cracking Pass/Fail Model (90% 
Success Rate) 

 

Table 3.3: Results of D-Cracking Pass-Fail Models with KDOT Samples 
Sample Known to Pass 

or Fail 
Calculated 

Variable Correct? 

KS-9 Fail 0.21 Yes 
KS-43 Fail 0.24 Yes 
KS-22 Pass 0.97 Yes 
KS-41 Pass 0.45 Yes 
KS-8 Fail -0.36 Yes 
KS-37 Fail 0.81 No 
KS-29 Pass 0.49 Yes 
KS-11 Pass 0.65 Yes 

 

3.2.3 Acid Insoluble Residue (AIR) Results 

Kansas and New York submitted known AIR values with their aggregates. Kansas 

aggregates have low AIR, mostly less than 10%. When calibration samples do not have a good 

distribution of values, in this case AIR values, modeling over a wide range of values, particularly 

outside the calibration value range, is extremely difficult. New York provided two samples: New 

Scotland, with an average AIR value of 54.9%, and Becraft, with an average AIR value of 

11.9%. Using prepared blends of New Scotland and Becraft, it was possible to prepare 11 

blended samples with expected AIR values ranging from 11.9% to 54.9%. An additional five 

aggregate sources were supplied by NYSDOT. A list of the aggregates prepared and scanned for 

AIR analysis is presented in Table 3.4.   
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Table 3.4: Measured AIR Values for NYSDOT Samples 

Sample Name AIR % % Becraft /  
% New Scott 

NY-B0 54.9 100/0 
NY-B10 52.23 90/10 
NY-B20 44.40 80/20 
NY-B30 39.40 70/30 
NY-B40 31.60 60/40 
NY-B50 34.10 50/50 
NY-B60 29.40 40/60 
NY-B70 24.63 30/70 
NY-B80 19.60 20/80 
NY-B90 14.00 10/90 
NY-B100 11.90 0/100 
1.2RDriedScreening 32.70 

 
100 Becraft 11.90 

 
100 New Scotland 54.90 

 
E Kingston 53.60 

 
LabBlend 29.10 

 
 

Test set modeling was used to determine the accuracy of predicting AIR using SLT data. 

Two test set models were created. The first model removed samples 1.2RDriedScreening and 

100 Becraft from the calibration and then used the model to predict AIR in these two samples. 

Figure 3.10 shows the calibration results (diamonds) and the test set validation results (circles). 

The calibration model is very good with an r2 value equal to 0.989. Test set validation 

samples modeled relatively close to the known values. The 1.2RDriedScreening (known AIR = 

32.7%) was modeled at 39.6 +/- 14.2%, and 100 Becraft (known AIR = 11.9%) was modeled at 

15.5 +/- 12%.  
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Figure 3.10: New York AIR Test Set Validation (1) Calibration (Diamonds) and Test Set 
Validation (Circles) 

 

The second test set model was created using samples East Kingston and LabBlend as the 

test set validation samples. Results are shown in Figure 3.11. The second calibration was also 

excellent with an r2 value of 0.966. East Kingston (known AIR = 53.6%) was modeled at 36.2 

+/- 6.6%, and LabBlend (known AIR = 29.1%) was modeled at 21.5 +/- 5.2%.  
 

 
Figure 3.11: New York AIR Test Set Validation (2) Calibration (Diamonds) and Test Set 
Validation (Circles) 

 

While these results indicate that the SLT data can be modeled to estimate AIR values, the 

results are not yet as accurate or precise as desired. One reason for this is that the majority of the 

calibration model is derived from samples blended from the Becraft and New Scotland samples; 

that is, the calibration is controlled almost entirely by the compositions of two aggregates. If a 

larger number of aggregates with known AIR values were used to calibrate, it is expected that 
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the predictions would be more accurate. In addition, only a few samples were available for 

calibration; the model would be more precise with more samples. Finally, it was found in a 

separate study that the New York AIR lab data alone exhibited a range of values +/- 8%.4 

3.2.4 LA Loss Testing 

It was originally assumed that since LA Loss is a measure of degradation by abrasion, 

impact, and grinding, correlating spectral data dominated by chemical information with LA Loss 

would not be very productive. Our attempts at modeling LA Loss with OHDOT samples suggest, 

however, that this is not the case. Ohio submitted only eight samples with LA Loss 

measurements. This was deemed too small a sample set to generate a model with confidence. 

The calibration of these data is presented in Figure 3.12. The calibration, however, was very 

good, with r2 = 0.984 and a slope near 1. Validation of the calibration was performed with cross-

validation. The results, shown in Figure 3.13, exhibited moderately good correlation, suggesting 

that this model has promise if a sufficient number of samples are used. 
 

 
Figure 3.12: Ohio Sample Calibration for LA Loss 

 

                                                           
4 Laboratory bias (also referred to herein as lab heterogeneity) is discussed more fully in Section 4.3. 
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Figure 3.13: Ohio Cross-Validation for LA Loss 

 

An LA Loss model was also calibrated with a total of 82 multistate samples collected 

from Kansas, Ohio, Oklahoma, and Pennsylvania. Test set validation was performed with nine 

samples. The calibration is shown in Figure 3.14. Results for the test set validation are presented 

in Table 3.5. 
 

 
Figure 3.14: Calibration for LA Loss using Data from Kansas, Ohio, Oklahoma, and 
Pennsylvania 
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In general, LA Loss predictions tracked the known values. However, the analytical 

deviation is fairly high (+/- 6 to +/- 24), and the predicted value for OK-18 was very low.5 As 

noted previously, mineralogical heterogeneity and state-to-state laboratory bias are thought to 

have a significant influence on the results.6  
 

Table 3.5: Test Set Validation for LA Loss (%) using Nine Samples from KS, OH, OK, and 
PA 

Sample Nos.  Known Predicted Absolute Error 
KS-09 24 23 +/- 8 -1 
KS-19 29 24 +/- 6 -5 
KS-23 36 36 +/- 9 0 
KS-30 32 37+/- 8 5 
OH-01 36 28 +/- 10 -8 
OK-12 19 24 +/- 10 5 
OK-18 31 8 +/- 24 -23 
OK-23 36 43 +/- 9 7 
OK-32 41 32 +/- 16 -9 

 

3.2.5 Absorption Testing 

Results for the measurement of absorption are presented for Oklahoma aggregates (33 

samples) and for the combined aggregates from all states (97 samples). Of the 33 Oklahoma 

samples analyzed, four samples were found to be significant outliers and were removed from the 

model.7 The calibration for the Oklahoma absorption model is presented in Figure 3.15. There is 

significant scatter, as might be expected for a property like absorption, but the calibration was 

trending in a positive direction. Results for four test-set samples are plotted in Figure 3.16. 

Again, the results are not yet ideal, but given the wide range of lithologic and geographic 

variability, the results are encouraging and suggest that improvements in sample selection would 

yield improved results.  

 

                                                           
5 Note OK-18 has been identified previously (see Section 3.2.1) as an outlier. 
6 See Section 4.3. 
7 Outliers are identified when the selected sample(s) are noticeably unlike the remaining sample data in the calibration model.  
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Figure 3.15: Oklahoma Calibration for Absorption (Four Outliers Removed) 

 

 
Figure 3.16: Oklahoma Test-Set Validation for Absorption 

 

Ninety-seven samples from Kansas, Ohio, Oklahoma, and Pennsylvania were modeled 

using a different method. Instead of modeling the actual absorption value for an aggregate, 

samples were separated into two groups: greater than or equal to 2.5% absorption and less than 

2.5% absorption.  

If an aggregate exhibited an absorption value A > 2.5%, it was assigned the absorption 

variable 1; if A < 2.5%, the absorption variable was assigned a value of 0. The combined 

modeled results for absorption are shown in Figure 3.17. Here, the absorption variables 

calculated from SLT data for the calibration samples are plotted against sample number.8 Four 

samples are misidentified, using a VAD of 0.4, yielding an overall success rate of 95%. The 
                                                           
8 Sample number is an arbitrary designation used as a simple identifier for each sample in the scan. 
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results of test-set validation for 10 samples from Kansas, Ohio, and Oklahoma are also presented 

in tabular form in Figure 3.17. Nine of the 10 samples are correctly classified using the VAD = 

0.4 chosen during calibration. The model was 90% successful in predicting whether an aggregate 

has greater than 2.5% absorption or less than that threshold value. 
 

 
Figure 3.17: Combined States (KS, OK, and Ohio) VAD Model for Absorption 

 

3.2.6 Micro-Deval Loss Results 

Micro-Deval Loss was modeled for Oklahoma (27 aggregate samples) and Pennsylvania 

(14 slag samples) aggregates. The calibration for the Oklahoma Micro-Deval model is presented 

in Figure 3.18; the cross-validation results are presented in Figure 3.19. Due to the heterogeneity 

of the Oklahoma sample set, only limestone scans were included in the model calibration and 

validation process.  
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Figure 3.18: Oklahoma Calibration for Micro-Deval Loss (Outliers Removed) 

 

 
Figure 3.19: Oklahoma Cross-Validation for Micro-Deval Loss (Outliers Removed) 

 

The calibration model developed exhibited very high correlation. As previously noted, 

multivariate chemometric models have the capability to generate highly correlated calibration 

models, but this does not necessarily translate into effective predictive models. If the spectral 

information used to develop the calibration model does not contain sufficient information to 

define the spectra associated with the samples being tested, then the validation results will not be 

good. The cross-validation results presented in Figure 3.19 are poorly correlated. It is 

noteworthy, however, that the cross-validation regression trend line tracks the calibration model 
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trend quite well. This type of graphical result suggests that the model on average sees the correct 

trend, but additional calibration data (samples) are needed to provide the information necessary 

to define the wide heterogeneity associated with the Oklahoma sample set.  

The calibration for the Pennsylvania Micro-Deval model is presented as Figure 3.20; the 

cross-validation results are presented in Figure 3.21. The calibration is strong, with highly 

correlated results. The cross-validation results are less well correlated with known composition, 

but are clearly tending in the correct direction. 
 

 
Figure 3.20: Pennsylvania Calibration Model for Micro-Deval 

 

 
Figure 3.21: Pennsylvania Cross-Validation Model for Micro-Deval  
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3.2.7 Presence and Quantification of Deleterious Materials: Chert 

Nine samples received from the Ohio Department of Transportation were used to develop 

a chert content model. The calibration model for chert content is shown in Figure 3.22. The 

calibration is fairly good, with high r2 and slope near 1, although the slope is strongly controlled 

by the one sample with more than 10% chert. Once again, cross-validation results, shown in 

Figure 3.23, do not correlate nearly as well as the calibration model; however, the results trend in 

the right direction, suggesting that the data should be improved with a larger sample set. 
 

 
Figure 3.22: Ohio Calibration for Chert Content 

 

 
Figure 3.23: Ohio Cross-Validation for Chert Content 
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3.2.8 Production Samples Analysis 

During the TPF scanning and modeling effort, KDOT submitted several samples of a 

Limestone Member from a Kansas location to the Research team to determine whether laser 

scanning could provide the answers to the following questions. 

Question 1 deals with an issue of possible lithologic changes in a limestone ledge where 

KDOT was interested in determining whether the aggregate quality in the beds making up the 

limestone ledge were changing in composition. 

The conditions and question are as follows: 

• Originally, during the quarrying process, three beds within the ledge were 

sampled as KS-33, KS-34, and KS-35, respectively.  

• As quarrying proceeded, samples KS-48, KS-49, KS-50, and KS-51 were 

quarried from the same ledge as KS-33, KS-34, and KS-35. The formation 

here appears to be separated into four beds instead of three.  

• The question is: are KS-48, KS-49, KS-50, and KS-51 the same as KS-33, 

KS-34, and KS-35?  

Principal Component Analysis (PCA) was used to answer this question. A Principal 

Component Analysis (PCA) score plot for all Kansas samples is presented in Figure 3.24. Recall 

from Section 2.3 that PCA score diagrams plot the scanned samples on a two-dimensional (x vs. 

y type) diagram, and show the compositional relationship between samples. Score plots are 

interpreted in the same manner as two-variable X-Y plots. Samples that are similar in 

composition plot near each other and those with very different compositions will plot in a 

different section of the diagram. All Kansas samples are plotted in Figure 3.24 in order to see the 

compositions of the samples in question in the context of all Kansas limestones. 
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Figure 3.24: Principal Component Analysis Score Diagram for Kansas Samples 
Note that limestone samples KS-33 through KS-35 are similar to KS-48 through KS-51. 

 

The three original limestone samples (KS-33, KS-34, and KS-35) are plotted as diamonds 

and fall in a relatively small compositional area (shown by the small ellipse) compared to the 

compositions of all Kansas limestones. The samples in question, KS-48, KS-49, KS-50, and KS-

51, represented by the orange squares, fall in a larger compositional range (shown by the larger 

ellipse).  

These results indicate that KS-48, KS-49, KS-50, and KS-51 are not identical in 

composition to the original samples (KS-33, KS-34, and KS-35), but do occupy a similar 

compositional space. It is difficult to determine unequivocally whether or not the new samples 

are from the same beds as the original samples; however, it seems likely, based on these data, 

that the new samples do differ somewhat from the original by changes in composition related to 

natural facies changes. More samples need to be studied in order to evaluate the natural 

variability in limestone beds. 

Question 2 deals with stockpile verification. KDOT is interested in knowing whether 

seven aggregate samples collected from blended production piles are made up of aggregate from 

approved sources. 
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The conditions and question are as follows: 

• KDOT sent in aggregate samples for laser “fingerprinting” from the 

original three beds represented by KS-33, KS-34, and KS-35 discussed 

above in Question 1.  

• Only samples that pass KDOT D-cracking criteria are permissible in 

production samples. 

• Sample KS-33 failed the KDOT D-cracking criteria test; samples KS-34 

and KS-35 passed. 

• KDOT provided seven production samples numbered KS-41, KS-42,  

KS-43, KS-44, KS-45, KS-46, and KS-47 for scanning.  

• The question is: Are the production samples (KS-41, KS-42, KS-43,  

KS-44, KS-45, KS-46, and KS-47) blends of samples from KS-34 and  

KS-35, or blends of other samples?  

Once again, Principal Component Analysis (PCA) was used to answer this question. If 

the production samples are blends of KS-34 and KS-35, they should fall on a blending line 

between KS-34 and KS-35, illustrated by the small blue arrow in Figure 3.25. Instead of plotting 

between KS-34 and KS-35, the production samples KS-41 through KS-47 consistently fall to the 

left of KS-34 and KS-35. Furthermore, samples KS-48 through KS-51, which are possible 

correlatives of KS-33 through KS-35, plot to the right of KS-34 and KS-35. It is reasonable to 

interpret these data to mean that production samples KS-41 through KS-47 are not blends of  

KS-34 and KS-35. They could be blends of KS-34 or KS-35 and some other unknown aggregate 

or aggregates with composition(s) in the upper left of the score plot. 

These two studies demonstrate that SLT laser scanning data coupled with multivariate 

analysis can be used for quarry quality and real-time production sample analyses. 
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Figure 3.25: PCA Score Plot for Production Blended Samples KS-41 through KS-47 
Compared to Known Samples KS-33 through KS-35 and KS-48 through KS-51 
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Chapter 4: Discussion of Results 

4.1 Overview 

The primary objective of the TPF-5(278) effort was to determine whether laser scanning 

could effectively be employed to predict aggregate types and properties in a commercial 

environment. While the results presented in Chapter 3 showed that the calibrated laser scanning 

models developed are capable of providing the means to predict aggregate quality, model 

validation, while impressive, lacked consistent accuracy and precision. Chapter 4 provides an 

analysis and discussion of the factors identified by the Research team that are believed to be 

limiting model resolution as well as recommendations designed to mitigate each factor.  

Limiting factors identified to date include: 

• Mineralogical Heterogeneity 

• Particle Orientation Heterogeneity 

• Lab Data (Bias) Heterogeneity 

• Laser Scanning and Signal Reception Heterogeneity 

 
4.2 Mineralogical Heterogeneity 

It is the nature of construction aggregates to exhibit both intra- and inter-particle 

“mineralogical” heterogeneity. Intra-particle heterogeneity refers to the change in mineralogy 

along the surface of any one particle. Inter-particle heterogeneity refers to the change in 

mineralogy between different particles. This intra- and inter-particle mineralogical heterogeneity 

is illustrated in the limestone sample photograph shown in Figure 4.1. 

The “red dot” shown inside the black circle superimposed on the aggregate particle on the 

right side of Figure 4.1 illustrates the approximate diameter of the laser beam that impacts the 

aggregate particle during the scanning process. Many laser shots must be directed at the 

aggregate sample to generate a representative fingerprint of a sample. Due to the inherent 

mineral heterogeneity of aggregate, it should be apparent that the greater the number of samples 

scanned and the greater the number of laser shots directed at the aggregate in each sample, the 

more robust the calibration model. For example, taking 100 laser shots at a 3-gallon sample of 

aggregate would provide much more information about the nature of the sample than taking only 
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one or 10 laser shots. The models generated in this study were based on 1,500 laser shots per 

sample.9  
 

 
Figure 4.1: Target Orifice (Outer Circle) and Laser Shot (Red Dot Inside Circle) – 
Magnified Photo of ~½ Inch Diameter Aggregate 

 

4.3 Orientation Heterogeneity 

In addition to mineralogical heterogeneity, the SLT scanning system introduces into the 

analysis particle “orientation” heterogeneity. Particle orientation heterogeneity occurs because in 

the SLT (see Figure 2.3) a column of aggregate is moving past the target orifice through which 

the laser beam fires. The laser fires at a preset repetition rate as the aggregate passes by.10 The 

exact location or point at which the laser couples with an aggregate particle, as well as the 

orientation of the incoming laser beam and the outgoing spectral emission, are unknown. It is 

dependent on how the particles orient themselves in the material flow chute column relative to 

the target orifice. It is random.11 

The concept of orientation heterogeneity and how it impacts the incoming and outgoing 

light is shown in Figure 4.2. The most direct laser shot on an aggregate particle is one that hits 

the particle on a surface that is normal to the laser beam. When this occurs, the induced light 
                                                           
9 For each aggregate sample scanned, the sample bucket was cycled through the SLT 10 times with 150 laser shots fired each 
cycle. This generated 10 spectra composed of 150 shots each. The 10 spectra were subsequently averaged to generate one 
average spectra (fingerprint) for each sample.  
10 The repetition rate during the scanning conducted was initially set at 3 Hz (3 shots per second). 
11 In a bench operation, prior to firing a laser shot, an aggregate particle is placed on a platform, and the laser is focused on a 
specific location (i.e., point) on the particle. Such a point is shown in Figure 4.1. Orientation heterogeneity is much less of an 
issue.  
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emission (spectra) travels directly back along the line of the laser beam. Panel A illustrates the 

condition where the particle surface is normal to the incoming laser beam. Most particles will be 

at an angle to the side of the chute, propped up by another particle, as shown in Panel B. In this 

case, the particle may produce spectral light, but much of the light will not move directly back 

through the target orifice to the detector. Alternatively, the orifice may be aligned with the space 

between two particles (Panel C), so that the particles are beyond the focal plane of the laser 

pulse. In this case, no or very little light will be generated or collected. 

The original thinking in the design of the TPF-5(278) program was that “averaging all the 

data” from many laser shots would take into account the distribution of spectral data resulting 

from mineralogical and orientation heterogeneity. The SLT operations and software were all 

designed to run in this manner. The modeled results, presented in Chapter 3, show that modeling 

highway aggregate properties using LIBS spectra and multivariate models has great promise. 

This suggested that the “averaging” approach used was the correct one. 

Further analysis of the data by the research team, however, found that the spectral 

information and the models generated in the TPF effort were in general not as accurate or precise 

as in the lab-based study (Chesner & McMillan, 2012). The research team began to suspect that 

the spectra generated in the SLT were of lower quality than that generated in the laser bench 

scale test units, due to the “orientation” heterogeneity introduced by the SLT.  

A more detailed examination was made of the individual (non-averaged) laser shots and 

generated spectra to investigate this issue. The results of this investigation are presented in 

condensed form in Figure 4.3, which depicts the quality of spectra generated by analyzing 

intensity ranges of 4,959 individual laser shots. Beginning on the left hand side of the figure and 

moving downward, the spectra were sorted into 10 total intensity ranges.12 The high-intensity 

spectra, presented on the left side of the figure, are similar to those obtained in the 2012 bench 

scale study.13 In contrast, the low-intensity spectra (lower than 50% of the maximum spectra) 

lack many of the peaks present in the high-intensity spectra. The scale of this problem is 

                                                           
12 Total intensity is the sum of the intensities of all wavelengths for a particular laser scan. 
13 In the lab study, each aggregate particle is placed on a platform by hand, the laser is focused on the target; there are no 
restrictions between the induced emission light and the optical fiber, which transmits the light to the spectrometer. 
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illustrated by the data in Figure 4.4 and Table 4.1, which show that very few SLT spectra have 

high intensity; low-quality, low-intensity spectra are much more common.  
 

 

Figure 4.2: Illustration of Orientation Heterogeneity in the SLT Aggregate Flow Chute 
A. The aggregate particle is properly oriented with its relatively flat side flush against the side of the chute 
adjacent to the laser orifice. The light from the sample (short blue arrow) is able to pass back through the 
orifice and reach the detector.  
B. Some particles are at an angle to the laser beam because they are propped up by other particles. Only 
a small amount of the spectral light can pass back through the orifice and reach the detector.  
C. Often, the laser beam interacts with the space between two grains, yielding little or no light. 

 

Over half of the 4,959 spectra acquired from this sample have intensities below 20% of 

the most intense spectrum (Table 4.1). Since during the TPF effort every spectrum was included 

in the overall sample average, the high-quality spectra were being diluted by the low-quality 

spectra data. This can be seen by comparing the last spectra (lower right) in Figure 4.3. Note the 

signal degradation, and that the average of 4,959 spectra is similar to a low-quality spectrum. 

Orientation heterogeneity (see Figure 4.2) results in a decreasing number of good quality shots 

during any laser scan. Averaging the good quality shots with the poor quality shots dilutes the 

good data. 
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Figure 4.3: Examples of Spectra of a Kansas Limestone at Different Levels of Intensity 
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Figure 4.4: Histogram of Number of Samples as a Function of Total Intensity 

 

Table 4.1: The Number and Percent of Spectra as a Function of Total Intensity 
% of Maximum Intensity # Spectra % 
100-90 5 0.1% 
90-80 12 0.2% 
80-70 23 0.5% 
70-60 37 0.7% 
60-50 102 2.1% 
50-40 175 3.5% 
40-30 458 9.2% 
30-20 860 17.3% 
20-10 2046 41.3% 
10-1 1241 25.0% 

 

4.3.1 Kansas Specific Gravity Results Using Filtered Data 

To compare the effects of employing numerical techniques to filter out lower quality 

spectral data from the analysis, 56 samples from Kansas (labeled KS-1 through KS-56) were 

analyzed with 5,000 individual shots each. Models were calculated for three different filtering 

levels:  
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• Average of all 5,000 shots 

• Average of all shots with intensity greater than the average intensity 

• Average of all shots with intensity greater than 10,000,000 counts14 

The results of the saturated specific gravity models for each condition are respectively 

shown in Figure 4.5, Figure 4.6, and Figure 4.7. The correlations (r2 = 0.80) between the known 

specific gravity values (provided by KDOT) and the model values are similar for the average of 

5,000 (Figure 4.5) and average of spectra with total intensity greater than the average total 

intensity (Figure 4.6). This is because there are so many low-intensity spectra that even filtering 

out the lowest half of them does not significantly improve data quality. However, the correlation 

using the average of spectra with total intensities greater than 10,000,000 (Figure 4.7) is much 

improved (r2 = 0.91).  
 

 
Figure 4.5: Calibration for SSDSG Specific Gravity using the Average of All 5,000 Shots 
for Each Sample 

 

                                                           
14 The limit of 10,000,000 counts is arbitrary and was set at a level for which most samples have at least 100 shots. A large 
number of shots are necessary to capture the mineralogical heterogeneity in the sample. 
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Figure 4.6: Calibration for Saturated Specific Gravity using the Average of all Spectra 
with Total Intensity Greater than the Average Total Intensity 

 

 
Figure 4.7: Calibration of Saturated Specific Gravity Model using the Average of Spectra 
with Total Intensity Greater than 10,000,000 Counts 

 

Four Kansas samples (KS-11, KS-21, KS-31, and KS-51) were set aside as a test set to 

evaluate the effectiveness of the model. The SSD specific gravity values predicted by the model 

were found to be within 0.04 units of the known values and are listed in Table 4.2. The data 
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indicate that the filtering method has promise as a workable solution to the orientation 

heterogeneity issue. 
 

Table 4.2: Values of Saturated Specific Gravity Calculated for Test Set Validation 
Samples* 

Sample Known SG 
Saturated 

SLT SG 
Saturated 

Analytical 
Error Difference 

KS-11 2.71 2.75 0.05 0.04 

KS-21 2.67 2.69 0.02 0.02 

KS-31 2.69 2.66 0.05 0.03 

KS-51 2.65 2.61 0.05 0.04 

* Laser shots with total average intensity greater than 10,000,000 counts 

 

4.4 Lab Data Heterogeneity 

Calibration models are dependent on the use of traditional lab test data as input into the 

model. For example, if an acid insoluble residue (AIR) calibration model is under development, 

the AIR value of each sample used in the model must be known. If AIR procedures differ 

amongst laboratories, the AIR test value of the exact same sample generated in two regions 

would differ. This would adversely affect the quality of the calibration model. Many of the 

engineering tests used in this study, such as specific gravity, AIR, and D-cracking, require 

lengthy tests with some subjective aspects (e.g., Has the aggregate stopped reacting with acid? Is 

the aggregate appropriately saturated for the various specific gravity measurements?). Results for 

these properties probably vary from state to state. 

 
4.5 Laser Power and Signal Reception Heterogeneity 

In a materials lab environment, laser power output and signal reception can be expected 

to fluctuate in response to temperature, humidity, system vibrations, and electromagnetic 

radiation fluctuations induced by surrounding equipment and processes. Laser power and output 

fluctuations can also affect the quality of the calibration model.  
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4.6 Addressing the Issues 

In the latter part of the first pooled fund study, the research team began work on 

addressing these types of heterogeneity. A large number of shots are necessary to capture all of 

the mineralogic heterogeneity in each sample. The study used the average of 1,500 laser shots. 

However, the recognition of orientation heterogeneity resulted in the collection of 5,000 shots 

per sample. All shots with total intensity less than 107 are discarded; the high-intensity shots are 

averaged. The number of high-intensity shots varies from 100 to about 500; this is roughly 

equivalent to the 150 shots used in the preliminary lab study. This filtering method will be tested 

in a second pooled fund project. 

The variation in known values for engineering properties for aggregates measured in 

different states imparts an unknown, but potentially large, effect on the chemometric models. It 

would be interesting to measure this laboratory bias for the engineering properties in a round-

robin style study and test the idea that the ensuing SLT models will improve. 

Finally, protocols are being developed to monitor lab environmental factors such as 

temperature, humidity, vibrations, and electromagnetic radiation from surrounding equipment. 

As the result of these factors on SLT data and models is understood, it will be possible to correct 

for them. 
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Chapter 5: Findings and Conclusions 

Pooled fund project TPF-5(278) included an evaluation of the promise of laser scanning 

in a field commercial system. Calibrated models and validation tests were undertaken on 

aggregate samples received from five states (Kansas, New York, Ohio, Oklahoma, and 

Pennsylvania) to assess how well the models developed predicted the aggregate quality. 

The findings are as follows: 

• Multivariate (chemometric) calibration models and validation tests on 

these models (developed to predict values for AIR, bulk specific gravity, 

SSD specific gravity, apparent specific gravity, absorption, LA Loss, 

Micro-Deval, approved materials, D-cracking, and percent chert) yielded 

very promising results. 

• Several types of heterogeneity will affect the quality of the spectra and 

laser generated fingerprints during laser scanning. These include: (1) 

mineralogical heterogeneity, a function of the aggregate source; (2) 

particle orientation heterogeneity, a function of the physical manner in 

which the aggregate particles orient relative to the laser beam; (3) lab data 

heterogeneity, a function of differences in test data generated by different 

laboratories; and (4) laser and reception signal heterogeneity, a function of 

fluctuating environmental factors. 

• The relatively small number of samples tested to date and the large 

variability in the types of samples tested limited the accuracy of the 

validation test predictions during this investigation. 

• Chemometric models appear to be improved by filtering the spectra and 

only using the high-intensity, high-quality data, and so new system and 

data processing improvements that can discriminate between good and 

poor laser shots, filter out the poor shots, and process a large number of 

individual (non-averaged) laser shots will improve modeling resolution. 
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From these findings, we conclude: 

• Laser scanning in near real-time of aggregate materials is a technology 

capable of significantly improving the manner in which aggregate quality 

control procedures are employed by the industry, altering the paradigm of 

aggregate monitoring established in the early 20th century. 

• A sufficient number of laser shots and a sufficient number of samples 

must be included in any calibration model to address both the 

mineralogical and orientation heterogeneity encountered in the test 

program. The exact number is dependent on the heterogeneity of the 

samples and can be determined by assessing how the model converges to 

the correct answer with increasing numbers of samples and laser shots. 

• A sufficient number of high quality (filtered) laser shots are needed to 

mitigate the effects of laser power and signal reception heterogeneity. 

• Improvements in data processing and analytical techniques that can handle 

individual (non-averaged) data and filter out poor laser shots from the 

analysis are needed to assist in resolving the spectral information 

generated during the laser scanning process and improving model 

predictions of aggregate properties. 

• Further studies are needed to assess how state-to-state lab testing 

heterogeneity affects modeled results. 
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Chapter 6: Recommendations 

While the TPF-5(278) findings were very impressive, and while it was concluded that the 

technology will change the manner in which QC testing occurs in the future, it was also 

concluded that several technology-related issues remain to be addressed. They include: 

• Expanding the number of state agencies participating in the assessment 

and thereby scanning and modeling of a larger number of aggregates of a 

broader range of geologic types to strengthen the models and additional 

engineering properties; 

• Modifying the SLT to permit scanning of a larger number of laser shots 

per sample (5000, 10,000, and 15,000 per sample) to account for 

mineralogical heterogeneity; 

• Redesigning the data processing software to adequately process the large 

data sets and provide the means to automatically filter out poor laser shots 

from good ones to account for orientation heterogeneity. 

• Scanning all new samples received from participating state agencies and 

retesting all the aggregate received during the initial TPF to compare the 

results of the old and upgraded system; and 

• Development of an AASHTO Standard of Practice for QC Testing Using 

Laser Scanning. 

The latter recommendation underscores the fact that state participation is a critical 

component in the development of aggregate laser scanning technology, because without state 

transportation agency review and acceptance, commercial implementation of the technology will 

stall. 

It is recommended that the above-itemized recommendations be pursued by continuing 

the effort initiated in the TPF-5(278) effort in an ongoing Phase 2 TPF evaluation. By 

maintaining the existing state participation in this effort and the current management structure, 

the project can continue in a seamless manner and provide the means to bring additional states 

into the project.   
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